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A scalar gravitational potential function expressed as a series of spherical harmonics
frequently serves as the basis for a model of an astronomical body’s gravitational field.
The contribution of a generic spherical harmonic to gravitational gradient is expressed as
a dyadic, which is then used to obtain an analytical expression in vector-dyadic form for
the contribution to the moment of gravitational forces about the mass center of a small
body such as a spacecraft. The expression developed for a harmonic’s contribution to
gravitational gradient can be applied in areas beyond the scope of the paper; for example,
gravitational gradient plays an important role in the state propagation matrix and the state
transition matrix that are used in spacecraft trajectory targeting and Kalman filtering.
Additionally, it can be employed in numerical simulations of orbit determination based on
measurements obtained with a gradiometer in low-Earth orbit. Contributions of spherical
harmonics to gravitational moment may be of interest in connection with attitude control
of a spacecraft in the vicinity of a body with an irregular shape, such as an asteroid.
Normalized spherical harmonic coefficients up to degree and order 10 are obtained for the
asteroid 216 Kleopatra and used in numerical evaluations of contributions to gravitational
moment.

I. Introduction

Spherical harmonics are widely used to characterize the magnetic and gravitational fields of Earth, as
well as the gravitational fields of irregularly shaped bodies such as asteroids, comets, and the moons of

Mars. A sphere that circumscribes every material point of an astronomical body is referred to as a Brillouin
sphere; convergence of a spherical harmonic series is guaranteed in the region of space outside of this sphere,
but convergence is not guaranteed inside. In the case of Earth, the radius of the Brillouin sphere is equal to
the mean equatorial radius, 6,378 km. For example, points above the North or South pole at altitudes less
than 20 km are inside the Brillouin sphere. A polyhedral gravity model (Ref. [1]) is valid down to the surface
of the polyhedron; however, it is significantly more computationally expensive than a spherical harmonic
gravitational model. A polyhedral model is employed for bodies with irregular shapes at distances near or
below the radius of the Brillouin sphere.

A scalar gravitational potential function expressed as a series of spherical harmonics forms the basis for a
gravitational model. The first derivative of the potential with respect to position vector is the gravitational
force per unit mass, which is a vector. The second derivative of the potential with respect to position is a
dyadic, known as the gravitational gradient, and it can be used to construct the moment of gravitational
forces about the mass center of a small body such as a spacecraft. This moment is sometimes referred
to as gravity-gradient torque. Each spherical harmonic makes a contribution to gravitational moment.
These contributions are typically neglected for spacecraft in Earth orbit, but they may be of interest when
considering attitude behavior in the vicinity of an asteroid with highly irregular shape or mass distribution.

Zonal harmonics are independent of longitude, sectoral harmonics are independent of latitude, and tesseral
harmonics are dependent on latitude and longitude. Expressions for contributions to gravitational moment
provided in Refs. [2] and [3] are limited to the zonal harmonics. The purpose of this paper is to extend the
work in those publications to deal with sectoral and tesseral harmonics.

The expressions related to gravitational gradient provided in the paper are useful for purposes other than
construction of gravitational moment. In studies of spacecraft orbital motion it is often advantageous to
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work with a state deviation, a difference between the state (position and velocity) on an actual trajectory
and the state on a reference trajectory. In linearized first-order differential equations that govern the state
deviation, a part of the state propagation matrix involves gravitational gradient. The state propagation
matrix plays a prominent part in the first-order differential equations that govern the state transition matrix
(Refs. [4] and [5]). Trajectory targeting and Kalman filtering both rely on the state transition matrix.
Recently, researchers have proposed autonomous low-Earth orbit determination using a Kalman filter to
process measurements of gravitational gradient obtained from a gradiometer (Refs. [6] and [7]). Expressions
presented here in connection with the contribution of a spherical harmonic to gravitational gradient can be
used in numerical simulations involving gradiometer measurements obtained in low-Earth orbit.

The remainder of the paper is organized as follows. Section II begins with a review of the gravitational
potential expressed as a spherical harmonic series. The section continues and concludes, respectively, with
expressions for the contribution of a generic spherical harmonic to gravitational force per unit mass and
to the gravitational gradient dyadic. The contribution of a spherical harmonic to gravitational moment is
presented in vector-dyadic form in Sec. III, and a few useful recursion relations are reviewed in Sec. IV. The
validity of the expressions for contributions to gravitational force per unit mass and gravitational gradient is
established in Sec. V. Spherical harmonic coefficients up to degree and order 10 are obtained for the asteroid
216 Kleopatra and used in numerical evaluations of gravitational moment contributions in Sec. VI.

II. Gravitational Potential, and Derivatives with Respect to Position

Following a brief review of spherical harmonic contributions to gravitational potential and gravitational
force per unit mass, an expression is set forth for the contribution to gravitational gradient.

A. Gravitational Potential

The gravitational potential V of a body E can be expressed as an infinite series of spherical harmonics,

V =
µ

R

[
1 +

∞∑
n=1

n∑
m=0

(
RE
R

)n
Pn,m(sλ)(Cn,m cosmφ+ Sn,m sinmφ)

]
(1)

where µ, the gravitational parameter, is the product of G, the universal gravitational constant, and M , the
mass of E. The position vector from a point O fixed in E to a generic point Q is represented by R and
has magnitude R. RE is a scaling radius for E. Pn,m is the associated Legendre function of the first kind,
of degree n and order m, and has as its argument sλ, which denotes the sine of λ, the latitude of Q. The
longitude of Q is denoted by φ. Cn,m and Sn,m are unnormalized gravitational coefficients of degree n and
order m. If point O is chosen to be coincident with the mass center of E, then C1,0, C1,1, and S1,1 all vanish
as discussed, for example, in Refs. [8] and [9].

Equation (1) can be expressed in the following compact form

V =
µ

R
+

∞∑
n=1

n∑
m=0

Vn,m (2)

when Vn,m is defined by Eq. (2) of Ref. [10],

Vn,m =
µRE

n

Rn+m+1
An,m(Cn,mCm + Sn,mSm) (3)

where An,m, referred to as a derived Legendre polynomial of degree n and order m, is related to the associated
Legendre function Pn,m by Eq. (9b) of Ref. [11] (see also p. 3 of Ref. [10]).

Pn,m(sλ) = (cosλ)
m
An,m(sλ) =

( ρ
R

)m
An,m(sλ) (4)

Let ê1, ê2, and ê3 be a set of dextral, mutually perpendicular unit vectors fixed in E. ê1 and ê2 are typically
regarded as fixed in the equatorial plane of E, with longitude measured from ê1. ê3 is used to determine
the latitude of Q; that is, sλ = r̂ · ê3, where unit vector r̂ has the same direction as R. The quantity ρ is
related to R by the definition

ρ2
4
= (R · ê1)

2
+ (R · ê2)

2
(5)
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In words, ρ is the magnitude of the projection of R onto the equatorial plane. The quantities Sm and Cm
introduced in Eq. (3) are defined on p. 4 of Ref. [10] as

Sm
4
= ρm sinmφ Cm

4
= ρm cosmφ (6)

B. Gravitational Force per Unit Mass

The gravitational force per unit mass f exerted by E at point Q, a vector, is obtained by differentiating the
scalar potential with respect to the position vector R from O to Q. That is,

f = ∇V = ∇ µ
R

+

∞∑
n=1

n∑
m=0

∇Vn,m (7)

where ∇ denotes differentiation with respect to the position vector R. The result of carrying out the
differentiation is shown in Ref. [12] to be

f = − µ

R2
r̂ +

∞∑
n=1

n∑
m=0

fn,m (8)

where fn,m represents the contribution to f of the spherical harmonic of degree n and order m, given by

fn,m =
µRE

n

Rn+m+1

{
Cn,mCm + Sn,mSm

R
[An,m+1ê3 − (sλAn,m+1 + (n+m+ 1)An,m) r̂]

+mAn,m [(Cn,mCm−1 + Sn,mSm−1)ê1 + (Sn,mCm−1 − Cn,mSm−1)ê2]

}
(9)

C. Gradient of Gravitational Force per Unit Mass

The second derivative of V with respect to R, which is the first derivative of f with respect to R, is a
symmetric dyadic. A dyadic S is symmetric if it satisfies the relationship v · S = S · v for any vector v.

∇∇V =
µ

R3
(3r̂r̂ −U) +

∞∑
n=1

n∑
m=0

Dn,m (10)

where the unit dyadic U is defined such that, for any vector v, v · U = U · v = v. The dyadic Dn,m is
symmetric and is given by

Dn,m = ∇∇Vn,m

= µRE
n
{

Γ1r̂r̂ + Γ2ê3ê3 + Γ3(ê3r̂ + r̂ê3)

+ Γ4(ê1ê3 + ê3ê1) + Γ5(ê2ê3 + ê3ê2)

+ Γ6(ê1r̂ + r̂ê1) + Γ7(ê2r̂ + r̂ê2)

+ Γ8(ê1ê1 − ê2ê2) + Γ9(ê1ê2 + ê2ê1) + Γ10U
}

(11)

where the coefficients Γ1, . . . ,Γ10 are defined as follows.

Γ1
4
=

(Cn,mCm + Sn,mSm)

Rn+m+3

{
sλ[sλAn,m+2 + (2n+ 2m+ 5)An,m+1]

+ (n+m+ 1)(n+m+ 3)An,m
}

(12)

Γ2
4
=

An,m+2

Rn+m+3
(Cn,mCm + Sn,mSm) (13)

Γ3
4
=
−(Cn,mCm + Sn,mSm)

Rn+m+3
[sλAn,m+2 + (n+m+ 2)An,m+1] (14)

Γ4
4
=
mAn,m+1

Rn+m+2
(Cn,mCm−1 + Sn,mSm−1) (15)

3 of 15

American Institute of Aeronautics and Astronautics



Γ5
4
=
mAn,m+1

Rn+m+2
(Sn,mCm−1 − Cn,mSm−1) (16)

Γ6
4
=
−An,m
Rn+m+2

m(n+m+ 1)(Cn,mCm−1 + Sn,mSm−1)− sλΓ4 (17)

Γ7
4
=
−An,m
Rn+m+2

m(n+m+ 1)(Sn,mCm−1 − Cn,mSm−1)− sλΓ5 (18)

Γ8
4
=

An,m
Rn+m+1

m(m− 1)(Cn,mCm−2 + Sn,mSm−2) (19)

Γ9
4
=

An,m
Rn+m+1

m(m− 1)(Sn,mCm−2 − Cn,mSm−2) (20)

Γ10
4
=
−(Cn,mCm + Sn,mSm)

Rn+m+3
[sλAn,m+1 + (n+m+ 1)An,m] (21)

It can be shown that Eqs. (10)–(21) are in agreement with the expression presented in matrix form in
Eq. (5-9) of Ref. [13]. It is worth noting that the dyads ê1ê1, ê2ê2, ê3ê3 and the dyadics ê1ê2 + ê2ê1,
ê1ê3 + ê3ê1, ê2ê3 + ê3ê2, and U appearing in Eqs. (10) and (11) are independent of R. Moreover, the
coefficients Γ4, . . . ,Γ7 need not be computed when m = 0, and Γ8 and Γ9 vanish when m = 0 or m = 1.

III. Gravitational Moment

A rigid body B can be regarded as small in comparison to E when the distance R between O and B?,
the mass center of B, exceeds the greatest distance from B? to any point of B. In that case, the moment M
about B? of the gravitational forces exerted by E on B is given approximately by Eq. (2.18.1) of Ref. [14],

M = −I×· ∇∇V (22)

where I is the central inertia dyadic of B, and ×· denotes the cross-dot product of the two dyadics, I and
∇∇V . Here, the point Q is taken to be B?, so that R is specifically the position vector from O to B?. Two
useful cross-dot identities are established in Eqs. (19) and (20) of Ref. [2]. First, I×· U = 0, where 0 is the

zero vector. Second, for any dyad uv made up of vectors u and v, −I×· uv = u× I · v. Hence, substitution
from Eqs. (10) and (11) into (22) leads directly to

M =
3µ

R3
r̂ × I · r̂ +

∞∑
n=1

n∑
m=0

Mn,m (23)

where Mn,m, the contribution to the gravitational moment of the spherical harmonic of degree n and order
m, is given by

Mn,m = µRE
n
{

Γ1r̂ × I · r̂ + Γ2ê3 × I · ê3 + Γ3(ê3 × I · r̂ + r̂ × I · ê3)

+ Γ4(ê1 × I · ê3 + ê3 × I · ê1) + Γ5(ê2 × I · ê3 + ê3 × I · ê2)

+ Γ6(ê1 × I · r̂ + r̂ × I · ê1) + Γ7(ê2 × I · r̂ + r̂ × I · ê2)

+ Γ8(ê1 × I · ê1 − ê2 × I · ê2) + Γ9(ê1 × I · ê2 + ê2 × I · ê1)
}

(24)

It can be shown that M2,0 is in agreement with Eq. (21) in Ref. [2], and M3,0 is the same as M3 reported
in Ref. [3].

IV. Recursion Relations

Table 1 of Ref. [11] contains recursion relation number I for An,m, which is numerically stable. For n ≥ 2
and 0 ≤ m ≤ n− 1,

An,m(u) =
1

n−m
[(2n− 1)uAn−1,m(u)− (n+m− 1)An−2,m(u)] (25)

where u denotes the argument of An,m. Equations (14), (22), and (23) of Ref. [15] furnish values of derived
Legendre polynomials for initiating the recursion process.

A0,0 = 1 (26)
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An,n(u) = (1)(3)(5) · · · (2n− 1) n ≥ 1 (27)

An,n−1(u) = uAn,n n ≥ 1 (28)

An,m = 0 m > n (29)

Setting m = 1 in Eqs. (6), one obtains

S1 = ρ sinφ = R · ê2 C1 = ρ cosφ = R · ê1 (30)

These relationships provide seed values for the recursion formulae provided in Ref. [10]. For m ≥ 2,

Sm = S1Cm−1 + C1Sm−1 Cm = C1Cm−1 − S1Sm−1 (31)

V. Derivations

Differentiation with respect to a vector is discussed at length in Sec. 2.9 of Ref. [14]. Two relationships
reported therein will prove useful in what follows:

∇R = U (32)

and

∇r̂ =
(U− r̂r̂)

R
(33)

where R is any vector whatsoever, r̂ is a unit vector having the same direction as R, and ∇ denotes
differentiation with respect to R.

If s is a scalar function of R, and a and b are any two vector functions of R, then the material in Sec.
2.9 of Ref. [14] can be used to establish the following two rules that govern differentiation with respect to R
of products involving s, a, and b.

∇(sa) = (∇s)a + s(∇a) (34)

∇(a · b) = (∇a) · b + (∇b) · a (35)

In general, the dyad ab is not symmetric; in other words, for any vector v, v · ab 6= ab · v. Likewise, ba is
unsymmetric, and is not the same dyad as ab. The first term appearing on the right hand side of Eq. (34)
is a dyad; therefore, the order of the two vectors (∇s) and a is important. Furthermore, the dyads (∇a)
and (∇b) may be unsymmetric, and the orders of the dot products on the right hand side of Eq. (35) are
important.

After noting that R = (R · R)1/2, one may obtain another relationship that will be called upon several
times in the sequel. Keeping Eq. (35) in mind, one can write

∇ 1

Rn
= ∇(R · R)−n/2 = −n

2
(R · R)−(1+n/2)(U · R + U · R) = −n R

Rn+2
(36)

Thus, when proceeding from Eq. (7) to (8), one obtains with n = 1 the expected result for the first term on
the right-hand side, ∇µ/R = −µR/R3 = −µr̂/R2.

For convenience, Eq. (3) can be rewritten as

Vn,m = µRE
nAn,mTn,m
Rn+m+1

(37)

where the scalar Tn,m is defined as

Tn,m
4
= Cn,mCm + Sn,mSm (38)

The first derivative of Vn,m with respect to R is then

∇Vn,m = µRE
n

[
An,m∇Tn,m + Tn,m∇An,m

Rn+m+1
+ (Tn,mAn,m)∇ 1

Rn+m+1

]
(39)

Equation (10) in Ref. [11] allows one to write

∇An,m(u) =
d

du
An,m(u)∇u = An,m+1(u)∇u (40)
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where the symbol u represents the argument of An,m. Hence,

∇An,m(sλ) = An,m+1(sλ)∇sλ (41)

After noting that ê3 is independent of R, in view of Eq. (33), one can write

∇sλ = ∇(r̂ · ê3) =
(U− r̂r̂)

R
· ê3 =

(ê3 − r̂r̂ · ê3)

R
=

(ê3 − sλr̂)

R
(42)

Therefore,

∇An,m(sλ) =
An,m+1

R
(ê3 − sλr̂) (43)

Equations (7a)–(7d) of Ref. [10] furnish an especially compact representation of the derivatives of Sm and
Cm with respect to R,

∇Sm = m(Sm−1ê1 + Cm−1ê2) ∇Cm = m(Cm−1ê1 − Sm−1ê2) (44)

The spherical harmonic coefficients Cn,m and Sn,m are constants and hence independent of R; therefore, the
definition of Tn,m in Eq. (38) can be used together with Eqs. (44) to write

∇Tn,m = m[(Cn,mCm−1 + Sn,mSm−1)ê1 + (Sn,mCm−1 − Cn,mSm−1)ê2] (45)

In view of Eq. (36), one can write

∇ 1

Rn+m+1
= −(n+m+ 1)

R

Rn+m+3
(46)

Substitution from Eqs. (43), (45), and (46) into (39) establishes the validity of Eq. (9).
We now turn our attention to obtaining the second derivative of V with respect to R. Referring to Eqs.

(36) and (32), one can deal with the first term on the right-hand side of Eq. (8) by writing

−∇µr̂
R2

= −µ∇ R

R3
= µ

(
3R

R5
R− U

R3

)
=

µ

R3
(3r̂r̂ −U) (47)

To obtain the second derivative of Vn,m with respect to R, begin by rewriting Eq. (39) as

∇Vn,m = µRE
n

[
An,m∇Tn,m + Tn,mAn,m+1∇sλ

Rn+m+1
+ (Tn,mAn,m)∇R−(n+m+1)

]
(48)

With Eq. (34) in mind, the second derivative can then be expressed as

∇∇Vn,m = µRE
n

{
∇An,m∇Tn,m +An,m∇∇Tn,m

Rn+m+1

+
(∇Tn,mAn,m+1 + Tn,m∇An,m+1)∇sλ + Tn,mAn,m+1∇∇sλ

Rn+m+1

+∇R−(n+m+1)(An,m∇Tn,m + Tn,mAn,m+1∇sλ)

+ (∇Tn,mAn,m + Tn,m∇An,m)∇R−(n+m+1) + (Tn,mAn,m)∇∇R−(n+m+1)

}
(49)

By appealing to Eq. (41), one arrives at

∇∇Vn,m = µRE
n

{
[
An,m+1

(
∇∇sλ
Rn+m+1

+∇sλ∇R−(n+m+1) +∇R−(n+m+1)∇sλ

)
+

An,m+2

Rn+m+1
∇sλ∇sλ +An,m∇∇R−(n+m+1)

]
Tn,m

+

[
An,m+1

Rn+m+1
∇sλ +An,m∇R−(n+m+1)

]
∇Tn,m

+ ∇Tn,m
[
An,m+1

Rn+m+1
∇sλ +An,m∇R−(n+m+1)

]
+

An,m
Rn+m+1

∇∇Tn,m
}

(50)
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Now, by considering Eq. (42) one may reproduce Eq. (16) in Ref. [3], which states

∇∇sλ =
1

R2
[3sλr̂r̂ − (ê3r̂ + r̂ê3 + sλU)] (51)

Substitution from Eqs. (42) and (46) yields

∇sλ∇R−(n+m+1) +∇R−(n+m+1)∇sλ =
(n+m+ 1)

Rn+m+3
[2sλr̂r̂ − (ê3r̂ + r̂ê3)] (52)

These two relationships permit one to write the first term in the first set of square brackets on the right-hand
side of Eq. (50),

An,m+1

(
∇∇sλ
Rn+m+1

+∇sλ∇R−(n+m+1) +∇R−(n+m+1)∇sλ

)
=

An,m+1

Rn+m+3
[3sλr̂r̂ − (ê3r̂ + r̂ê3 + sλU)] +

(n+m+ 1)An,m+1

Rn+m+3
[2sλr̂r̂ − (ê3r̂ + r̂ê3)]

=
An,m+1

Rn+m+3
[(2n+ 2m+ 5)sλr̂r̂ − (n+m+ 2)(ê3r̂ + r̂ê3)− sλU] (53)

The right hand side of Eq. (42) can be juxtaposed with itself to yield the dyadic

∇sλ∇sλ =
(ê3 − sλr̂)

R

(ê3 − sλr̂)

R
=

1

R2
[sλ

2 r̂r̂ − sλ(ê3r̂ + r̂ê3) + ê3ê3] (54)

From Eq. (46) one can obtain

∇∇R−(n+m+1) = (n+m+ 1)[(n+m+ 3)R−(n+m+5)RR−R−(n+m+3)U] (55)

The terms containing the second and third sets of square brackets on the right-hand side of Eq. (50) are
formed with the aid of Eqs. (42), (45), and (46); that is[

An,m+1

Rn+m+1
∇sλ +An,m∇R−(n+m+1)

]
∇Tn,m

=
m

Rn+m+2
[An,m+1(ê3 − sλr̂)− (n+m+ 1)An,mr̂] [(Cn,mCm−1 + Sn,mSm−1)ê1

+ (Sn,mCm−1 − Cn,mSm−1)ê2] (56)

and

∇Tn,m
[
An,m+1

Rn+m+1
∇sλ +An,m∇R−(n+m+1)

]
=

m

Rn+m+2
[(Cn,mCm−1 + Sn,mSm−1)ê1 + (Sn,mCm−1 − Cn,mSm−1)ê2][An,m+1(ê3 − sλr̂)

− (n+m+ 1)An,mr̂] (57)

Employing Eqs. (44) recursively yields

∇∇Sm = m(m− 1)[Sm−2(ê1ê1 − ê2ê2) + Cm−2(ê1ê2 + ê2ê1)] (58)

∇∇Cm = m(m− 1)[Cm−2(ê1ê1 − ê2ê2)− Sm−2(ê1ê2 + ê2ê1)] (59)

and these relationships can be used together with Eq. (38) to obtain

∇∇Tn,m = Cn,m∇∇Cm + Sn,m∇∇Sm (60)

= m(m− 1)
[
(Cn,mCm−2 + Sn,mSm−2)(ê1ê1 − ê2ê2) + (Sn,mCm−2 − Cn,mSm−2)(ê1ê2 + ê2ê1)

]
Substitution from Eqs. (53)–(57) and (60) into (50) establishes the validity of Eq. (11). In turn, Eqs.

(47) and (11) lead directly to Eq. (10).
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Figure 1. Kleopatra, three-dimensional view
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Figure 2. Kleopatra, top view
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Figure 3. Kleopatra, side view
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VI. Asteroid 216 Kleopatra

The main-belt asteroid 216 Kleopatra has a highly irregular shape; it is similar to a dog bone, as illustrated
in Figs. 1–3. Thus, Kleopatra serves as a rather interesting example to employ in a numerical study of
contributions of spherical harmonics to gravitational moment.

Figures 1–3 are constructed from the shape model obtained by Ostro et al. in Ref. [16]. The model
is available at https://echo.jpl.nasa.gov/asteroids/shapes/kleo.obj. As discussed in Ref. [17], the
size of the model provided by Ostro et al. is scaled up in order to obtain a mass of 4.64 × 1018 kg when
the density is assumed to be 4.27 g/cm3. A scaling factor of 1.153032510683412 results in a volume of
1.086651053864165 × 106 km3. The original shape model is also adjusted such that the centroid becomes
the reference point for the position vectors of the vertices. The maximum distance from the centroid to a
vertex is 131.6 km, which is thus the radius of the Brillouin sphere for the adjusted, scaled shape model.
The approach presented in Ref. [18] is used to obtain spherical harmonic coefficients up to degree and
order 10 for Kleopatra, with a scaling radius RE = 143.384921778618 km. The normalized values of the
coefficients, Cn,m and Sn,m, are recorded in Tables 1 and 2. A normalized coefficient is multiplied by a
normalizing factor Nn,m to obtain the corresponding unnormalized coefficient required in Eqs. (12)–(21).

Nn,m =
√

2(2n+ 1)(n−m)!/(n+m)! for m 6= 0, and Nn,m =
√

2n+ 1 for m = 0.
Unnormalized spherical harmonic coefficients are used together with Eq. (24) to calculate contributions to

gravitational moment about the mass center of a spacecraft B having a central inertia dyadic I = I1 b̂1b̂1 +
I2 b̂2b̂2 + I3 b̂3b̂3 kg-m2, where b̂1, b̂2, and b̂3 are dextral, mutually perpendicular unit vectors fixed in B
and parallel to central principal axes of inertia of B. The central principal moments of inertia are taken to
be I1 = 36, 070 kg-m2, I2 = 98, 570 kg-m2, and I3 = 78, 221 kg-m2. Gravitational moment is calculated at
stations that lie on a circle of radius 150 km inclined 45◦ to the equatorial (x-y) plane of the asteroid; the
plane of the circle intersects the asteroid’s equatorial plane on the asteroid’s x axis. The station positions
are parameterized by an angle θ that has the value of 0 where the circle intersects the positive x axis of
Kleopatra. The orientation of B is such that b̂1 is always directed from the mass center of the asteroid to
the mass center of B, b̂2 is always tangent to the circle, and b̂3 is always perpendicular to the plane of the
circle. Unit vectors ê1, ê2, and ê3 fixed in the asteroid mark the directions of the positive x, y, and z axes
respectively. The orientation of b̂1, b̂2, and b̂3 with respect to ê1, ê2, and ê3 can be described with the
direction cosines in Table 3, with i = 45◦. It is easily verified that when r̂ is parallel to a central principal
axis of inertia of B, r̂ × I · r̂ = 0. This is the case in the present example because r̂ = b̂1, and therefore the
first term in each of Eqs. (23) and (24) vanishes.

Contributions of spherical harmonics of degree 2 to gravitational moment are shown in Fig. 4. M2,0,
M2,1, and M2,2 are the contributions of a zonal, tesseral, and sectoral harmonic, respectively. Projections of

these vectors onto b̂1, b̂2, and b̂3 as functions of θ are presented in the the top, middle, and bottom plots,
respectively. Equations (30)–(32) of Ref. [2] are applicable to the present example; M2,0 can be written as

M2,0 =
12µC2,0RE

2 sin i

R5

[
1

4
(I3 − I2) cos i cos θ b̂1 + (I3 − I1) cos i sin θ b̂2 + (I1 − I2) sin i sin θ cos θ b̂3

]
(61)

and this expression is in concert with the functional forms of the corresponding curves in Fig. 4. Although
the projections of M2,1 are similar in character to those of M2,0 and M2,2, they are not evident at the scale

required to display the latter contributions. It is interesting to note that M2,2 · b̂r ≈ −M2,0 · b̂r for r = 1, 2.

Projections of M3,m (m = 0, 1, 2, 3) onto b̂1, b̂2, and b̂3 are displayed in Fig. 5. In each case the
sectoral contribution M3,3 provides the dominant projection, which is an order of magnitude less than the
corresponding projection of M2,2.

In practice the maximum value of the degree n is set to a finite integer N when gravitational force per
unit mass is calculated, for example, according to Eq. (8). The calculations are then said to be associated
with an N × N spherical harmonic gravity model. Calculations of gravitational moment according to Eq.
(23) can be dealt with and referred to in a similar manner. Because r̂ × I · r̂ = 0 in the present example,

M is given by the sum
∑N
n=1

∑n
m=0 Mn,m. Projections of M onto b̂1, b̂2, and b̂3 are shown in Fig. 6 for

N = 2, 5, and 10. As can be seen, the 10 × 10 gravitational moment model is poorly approximated by
the 2 × 2 and 5 × 5 models for the projections onto b̂1 and b̂2, whereas the 5 × 5 model may furnish a
reasonable approximation for the projection onto b̂3. Contributions to gravitational moment from higher
degree harmonics are thus demonstrated to be significant in the case of the asteroid Kleopatra. This result
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stands in contrast to what is observed for Earth, where
∑3
n=2

∑n
m=0 Mn,m is virtually indistinguishable

from M2,0.

Table 1. Normalized coefficients for Kleopatra, n = 0, 1, . . . , 7

n m Cn,m Sn,m
0 0 1 0

1 0 −9.9645× 10−18 0

1 1 4.45201× 10−17 −3.12047× 10−18

2 0 −0.0563137 0

2 1 0.000204617 −0.000431569

2 2 0.0958872 −0.000173268

3 0 −0.000487783 0

3 1 −0.000224572 −0.000481935

3 2 −7.652× 10−5 −0.000424934

3 3 −0.0018542 0.00291674

4 0 0.00955284 0

4 1 −0.000852424 −0.000127394

4 2 −0.0140889 0.000461535

4 3 0.000838149 0.000418229

4 4 0.0171909 −0.00115991

5 0 0.000366151 0

5 1 −8.29736× 10−5 0.000111662

5 2 −0.000233617 0.000489825

5 3 0.000604393 −0.000523938

5 4 −0.000410598 −0.000833892

5 5 −0.00225019 0.00193798

6 0 −0.00180719 0

6 1 0.000599411 0.000107414

6 2 0.00266428 −0.000134785

6 3 −0.000519542 −0.00032879

6 4 −0.00292046 0.000302123

6 5 0.000395859 0.000530943

6 6 0.00329497 −0.00065939

7 0 −0.000199044 0

7 1 −1.08159× 10−5 −1.26989× 10−5

7 2 0.000172302 −0.00023069

7 3 −0.00013192 7.5305× 10−5

7 4 0.000107121 0.000417474

7 5 0.000479654 −0.000276905

7 6 −0.000398871 −0.000495079

7 7 −0.00140063 0.000927067
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Table 2. Normalized coefficients for Kleopatra, n = 8, 9, 10

n m Cn,m Sn,m
8 0 0.000245673 0

8 1 −0.000329775 −5.14566× 10−5

8 2 −0.000394157 1.89922× 10−5

8 3 0.000286091 0.000157709

8 4 0.000510949 −5.08607× 10−5

8 5 −0.00021868 −0.000267254

8 6 −0.000620071 0.000114282

8 7 0.000158152 0.000351333

8 8 0.000572136 −0.000293814

9 0 9.05715× 10−5 0

9 1 7.15439× 10−5 −5.02249× 10−6

9 2 −8.70043× 10−5 8.6136× 10−5

9 3 −3.08506× 10−5 6.34522× 10−6

9 4 −2.42296× 10−5 −0.0001605

9 5 −6.18706× 10−5 2.2585× 10−5

9 6 0.000166904 0.000208757

9 7 0.000243874 −0.000117568

9 8 −0.00026601 −0.000206909

9 9 −0.000681636 0.000388259

10 0 3.8741× 10−5 0

10 1 0.000162276 1.95518× 10−5

10 2 −3.39526× 10−5 7.28263× 10−6

10 3 −0.000144807 −6.0498× 10−5

10 4 −2.35412× 10−5 −8.49923× 10−6

10 5 0.000116467 0.000105469

10 6 9.94341× 10−5 −1.74278× 10−6

10 7 −8.93117× 10−5 −0.000151414

10 8 −0.000153653 3.23242× 10−5

10 9 7.56925× 10−5 0.000180907

10 10 0.000105512 −0.000131908

Table 3. Direction Cosines

b̂1 b̂2 b̂3

ê1 cos θ − sin θ 0

ê2 cos i sin θ cos i cos θ − sin i

ê3 sin i sin θ sin i cos θ cos i
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Figure 4. Contributions of degree 2 to gravitational moment.
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Figure 5. Contributions of degree 3 to gravitational moment.
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Figure 6. Gravitational moment calculated with 2 × 2, 5 × 5, and 10 × 10 gravity models.
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VII. Conclusions

The gravitational potential of an astronomical body is commonly represented as a series of spherical
harmonics. The paper presents a vector-dyadic expression for the contribution of a generic spherical harmonic
to the moment of gravitational forces about the mass center of a small body, exerted by an astronomical body.
Expressions related to the contribution of a spherical harmonic to gravitational gradient can be employed to
construct a state propagation matrix and a state transition matrix, which are useful for trajectory targeting
and Kalman filtering. The expressions presented here in connection with gravitational gradient can also
be used in numerical simulations involving measurements obtained with a gradiometer in low-Earth orbit.
Contributions of spherical harmonics to gravitational moment about the mass center of a spacecraft are
evaluated numerically for a series of positions near the asteroid 216 Kleopatra. Results obtained when the
gravity model is truncated to degree and order N = 10 are noticeably different from results obtained with
N = 5 and N = 2.
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